Swan conductors for p-adic differential modules, II: Global variation
نویسنده
چکیده
Using a local construction from a previous paper, we exhibit a numerical invariant, the differential Swan conductor, for an isocrystal on a variety over a perfect field of positive characteristic overconvergent along a boundary divisor; this leads to an analogous construction for certain p-adic and l-adic representations of the étale fundamental group of a variety. We then demonstrate some variational properties of this definition for overconvergent isocrystals, paying special attention to the case of surfaces.
منابع مشابه
1 M ay 2 00 7 Swan conductors for p - adic differential modules , II : Global variation
Using a local construction from a previous paper, we exhibit a numerical invariant, the differential Swan conductor, for an overconvergent isocrystal on a variety over a perfect field of positive characteristic along a boundary divisor; this leads to an analogous construction for certain p-adic representations of the étale fundamental group of a variety. We then demonstrate some variational pro...
متن کاملN ov 2 00 6 Swan conductors for p - adic differential modules , I : A local construction Kiran
We define a numerical invariant, the differential Swan conductor, for certain differential modules on a rigid analytic annulus over a p-adic field. This gives a definition of a conductor for p-adic Galois representations with finite local monodromy over an equal characteristic discretely valued field, which agrees with the usual Swan conductor when the residue field is perfect.
متن کامل2 00 6 Swan conductors for p - adic differential modules , I : A local construction
We define a numerical invariant, the differential Swan conductor, for certain differential modules on a rigid analytic annulus over a p-adic field. This gives a definition of a conductor for p-adic Galois representations with finite local monodromy over an equal characteristic discretely valued field, which agrees with the usual Swan conductor when the residue field is perfect. We also establis...
متن کاملSwan conductors for p-adic differential modules, I: A local construction
We define a numerical invariant, the differential Swan conductor, for certain differential modules on a rigid analytic annulus over a p-adic field. This gives a definition of a conductor for p-adic Galois representations with finite local monodromy over an equal characteristic discretely valued field, which agrees with the usual Swan conductor when the residue field is perfect. We also establis...
متن کاملOn ramification filtrations and p-adic differential modules, I: equal characteristic case
Let k be a complete discretely valued field of equal characteristic p > 0 with possibly imperfect residue field and let Gk be its Galois group. We prove that the conductors computed by the arithmetic ramification filtrations on Gk defined in [3] coincide with the differential Artin conductors and Swan conductors of Galois representations of Gk defined in [17]. As a consequence, we give a Hasse-...
متن کامل